

A PARENTS' GUIDE TO MATHS IN THE CURRICULUM

Calculations

I can add and subtract numbers mentally with increasingly large numbers

Addition:

Try using partitioning (breaking numbers down into hundreds, tens and units) and knowledge of number bonds to add numbers in your head.

Eg. $145+155$.
$100+100=200$
$40+50=90$
$5+5=10$
$200+90+10=300$

Year 5 Add numbers with more than 4 digits
including money, measure and decimals with different numbers of decimal places

E23.59 Use column addition to add any pair of two-place decimal numbers including amounts of money.

Children should:

Understand the place value of tenths and hundredths and use this to align numbers with differing numbers of decimal place.

Swanland Education Trust

Subtraction:

240-137
Try counting on a number line in your head to subtract mentally and find the difference between two numbers.

A game of darts would be good to practice mental addition and subtraction!

I can identify multiples and factors, including finding all factor pairs of a number and common factor pairs of two numbers

I can divide numbers up to 4 digits by a 1 -digit number using the formal written method of short division
Year 5 Divide up to 4 digits by a single digit
Short division ineluding remainder answers. Please refer to Y4
on 13 if necessary to ensure ehildren are confident in the

I can multiply and divide mentally using known facts

Use what you know about times tables and doubling and halving to help solve more difficult problems. For example:
To multiply by 50 , multiply by 100 and halve the answer.
To multiply by 25 you multiply by 100 and then divide by 4 .
To multiply by 4 , double the number and double again. Double the answer again to multiply by 8 .
To divide by 4 , halve the number and halve again. Halve the answer again to divide by 8 .
Use times table knowledge to help solve similar problems involving decimals:
$7 \times 8=56$.
$0.7 \times 0.8=$
$5.6 \div 8=$
Which numbers could be written in the boxes?
$6 \times 0.9=\square \times 0.03$
$6 \times 0.04=0.008 \times$

Number

I can use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers
Children need to know prime numbers.

e.g. $2,3,5,7,11,13,17,19$

I can recognise and use square numbers and cube numbers, and the notation for squared and cubed

Cube Numbers		
$1^{3} 1 \times 1 \times 1=1$		
$2^{3} 2 \times 2 \times 2=8$	Formed by multiplying a digit by itself 3 times.	
$3^{3} 3 \times 3 \times 3=27$		
$4^{3} 4 \times 4 \times 4=64$	$\begin{aligned} & \text { e.g. } 10 \times 10 \times 10=1000 \\ & \text { which can be shown as: } \\ & 10^{3}=1000 \\ & 10 \text { cubed }=1000 \\ & 10 \times 10 \times 10 \text { cube } \end{aligned}$	
$5^{3} 5 \times 5 \times 5=125$		
$6^{3} 6 \times 6 \times 6=216$		
$7^{3} 7 \times 7 \times 7=343$		
$8^{3} 8 \times 8 \times 8=512$	$10 \times 10 \times 10$ cube	
$9^{3} 9 \times 9 \times 9=729$		
$10^{3} 10 \times 10 \times 10=1000$		
$11^{3} 11 \times 1 \times 111=1331$		
$12^{3} 12 \times 12 \times 12=1728$		
$13^{3} 13 \times 13 \times 13=2197$		
$14^{3} 14 \times 14 \times 14=2744$		
$15^{3} 15 \times 15 \times 15=3375$		

Square Numbers

Numbers which can be arranged in a square shape - for example:

Write the first six square numbers in ascending order:
Answer: 1, 4, 9, 16, 25, 36.

I can multiply and divide whole numbers and those involving decimals by 10, 100 and 1000

Multiplying and Dividing by 10, 100 and 1000

10000	1000	100	10	1	$\frac{1}{10}$	$\frac{1}{100}$	$\frac{1}{1000}$

	Multiplying
$\times 10$	digits move LEFT 1 space
$\times 100$	digits move LEFT 2 spaces
$\times 1000$	digits move LEFT 3 spaces

Dividing

© 2012 www.greatmathsteachingideas.com

To divide by 10 , move the digits one spise to the right.
To divide by 100, mowe the digits two spaces io the right

I can count forwards or backwards in steps of powers of 10 for any given number up to 1,000,000
Eg, 30; 300; 3,000; 30,000; 300,000;
900,000; 90,000; 9,000; 900; 90;

I can read, write, order and compare numbers to at least $1,000,000$
Eg. 986, 452 is nine hundred and eighty six thousand, four hundred and fifty two.

Find large numbers in the everyday environment and ask children to say the number in words. Eg. House prices, football match attendances, charity money raised - Children in Need, Red Nose Day

I can determine the value of each digit in numbers up to $1,000,000$
Using the larger numbers, ask the value of certain digits.
Eg. 546, 789-The 6 is worth 6000 (six thousand)
I can read Roman numerals to $1,000(M)$ and recognise years written in Roman numerals
M-1000 D-500 C-100 L-50 X-10 V-5 I-1

Eg. MDCV-1605
Look for examples of numbers in the world around you - clocks, watches, year at the end of TV credits.

I can round any number up to $1,000,000$ to the nearest $10,100,1000,10000$ and 100000

Use rhymes to help children to remember the rules of rounding:
1,2,3,4 - round it down to the one before.
$5,6,7,8,9$ - round it up to the next one on the line.
Look at larger numbers, for example, house prices or the cost of cars, and round them to the nearest 10,000 and 100,000
I can interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero
Look for examples in everyday contexts. For example: temperature rises and falls. Ask the differences between two temperatures (one positive and one negative). You could do this whilst watching the weather forecast.

Statistics

I can complete, read and interpret information in tables, including timetables

Look for examples when travelling or on holiday on various modes of transport such as trains, trams and buses. Discuss different journey options and look at how the information is organised and read in columns.
You can also look at timetables on line and allow your child to plan a journey beforehand.

Shape, space and measure
I can identify 3D shapes, including cubes and other cuboids, from 2D representations Look for examples of shapes at home or when out and about. Discuss how many faces, edges and vertices (corners) the shape has.

Sphere

Cone

Cube

Cuboid

Tetrahedron (triangle-based pyramid)

Cylinder

Triangular prism

I know angles are measured in degrees.
I can draw given angles and measure them in degrees.
I can estimate and compare acute (less than 90 degrees), obtuse (more than 90, but less than 180 degrees) and reflex (more than 180 degrees) angles.

Practise using a protractor to measure angles accurately to the nearest degree. Discuss how to accurately line up the protractor and how to read the scale to take the measurement.
Try challenging a partner to draw angles of a given size to the nearest degree. Swap with your partner and check how accurate your drawing is and how close you each were.
Check that answers are sensible by looking at whether your answer should be acute (less than 90°) or obtuse (between 90° and 180°).
What's my angle is a good website for measuring and estimating angles

I can identify angles at a point and one whole turn
I can identify angles at a point on a straight line and $\frac{1}{2}$ a turn

Learn key facts about angles:

- one whole turn is 360°
- angles on a straight line add up to 180°
- a right angle is 90°

I can identify other multiples of 90°
$90^{\circ}, 180^{\circ}, 270^{\circ}$ or 360°.
Practise directions by playing a 'Simon Says' style game and follow instructions to turn or jump in different multiples of 90°.
For example: Simon says, jump 90° clockwise; Simon says turn 270° anticlockwise.
For an extra challenge, try turning in multiples of $45^{\circ}: 45^{\circ}, 90^{\circ}, 135^{\circ}, 180^{\circ}, 225^{\circ}, 270^{\circ}$, $315^{\circ}, 360^{\circ}$.

Fractions, decimals and percentages

I can solve problems involving numbers up to 3 decimal places

Try solving problems with decimals such as money. Look for opportunities to add, subtract and multiply amounts of money.
For example: One pineapple costs $£ 1.39$ - how much would 2 pineapples cost?
Is this 3 for 2 offer good value for money?
I recognise the percent symbol and understand that percent relates to 'number parts per hundred'
Investigate percentages when shopping in the sales.
What does 20% off mean? Try finding 10% (by dividing by 10) and then double this amount to find 20\%.
Eg, 20\% off $£ 45$.
Find $10 \%-45 \div 10=£ 4.50$
$£ 4.50 \times 2=£ 9$
£45-£9 = £36
I can write percentages as a fraction and as a decimal
Know the basic fraction, decimal and percentage equivalences:

Decimal	Percentage	Fraction
0.5	50%	$\frac{1}{2}$
0.25	25%	$\frac{1}{4}$
0.75	75%	$\frac{3}{4}$
0.2	20%	$\frac{1}{5}$
0.1	10%	$\frac{1}{10}$
0.3	33.3%	$\frac{1}{3}$

There are a number of games on the Woodlands Junior website to test your child's knowledge on this topic.

Measurements

I can solve problems involving converting between units of time

Try converting between days, hours, minutes and seconds.
For example:

- How long is it until the party begins? In hours? In minutes? In seconds?
- How long is the journey?
- Countdown to Christmas - how many days are left? How many hours would that be? http://www.xmasclock.com/
- How old are you in days?

I can convert between different units of metric measure

Use measures in everyday, practical contexts at home. For example, in art and craft activities, baking, DIY tasks and sports activities.
Know the conversions between different units and swap between them.
For example:
How long is this football pitch in metres? What about cm?
How much flour do we need in grams and kilograms?

I understand and use approximate equivalences between metric units and common imperial units, such as inches, pounds and pints
Discuss the link between metric and imperial in everyday contexts such as baking, the capacity of different containers (milk bottles and different mugs, cups and glasses) and measurements on tape measures and rulers.
Discuss how miles and kilometres are related when travelling abroad.

I can estimate volume and capacity

Have fun (and get wet!) estimating the volume and capacity of different containers at home. This could be in the sink, the bath or even the paddling pool! Then try measuring the actual capacities using a measuring jug and see how close you were!

For an extra challenge, you could even convert the capacities between millilitres and litres.

Key facts to practise and know in Y 5

- TIMES TABLES. Although children should have learned all of the times tables, they still need to regularly practise all of the times tables up to 12×12. If they don't use them....they lose them!
- Multiples
- Factors (including common factors)
- Prime numbers
- Prime factors
- Composite numbers (non primes)
- Square numbers
- Cubed numbers
- Roman numerals
- Angles are measured in degrees

To see the whole of your child's Year 5 curriculum, use the following link:

The National Curriculum for Mathematics

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/335158/P RIMARY_national_curriculum_-_Mathematics_220714.pdf

Useful websites:

http://www.mathplayground.com/measuringangles.html
http://www.amblesideprimary.com/ambleweb/mentalmaths/protractor.html

